3.606 \(\int \frac {(1-\cos ^2(c+d x)) \sec (c+d x)}{(a+b \cos (c+d x))^2} \, dx\)

Optimal. Leaf size=94 \[ -\frac {2 b \tan ^{-1}\left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{a^2 d \sqrt {a-b} \sqrt {a+b}}+\frac {\tanh ^{-1}(\sin (c+d x))}{a^2 d}-\frac {\sin (c+d x)}{a d (a+b \cos (c+d x))} \]

[Out]

arctanh(sin(d*x+c))/a^2/d-sin(d*x+c)/a/d/(a+b*cos(d*x+c))-2*b*arctan((a-b)^(1/2)*tan(1/2*d*x+1/2*c)/(a+b)^(1/2
))/a^2/d/(a-b)^(1/2)/(a+b)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.17, antiderivative size = 94, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 31, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.194, Rules used = {3056, 12, 2747, 3770, 2659, 205} \[ -\frac {2 b \tan ^{-1}\left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{a^2 d \sqrt {a-b} \sqrt {a+b}}+\frac {\tanh ^{-1}(\sin (c+d x))}{a^2 d}-\frac {\sin (c+d x)}{a d (a+b \cos (c+d x))} \]

Antiderivative was successfully verified.

[In]

Int[((1 - Cos[c + d*x]^2)*Sec[c + d*x])/(a + b*Cos[c + d*x])^2,x]

[Out]

(-2*b*ArcTan[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt[a + b]])/(a^2*Sqrt[a - b]*Sqrt[a + b]*d) + ArcTanh[Sin[c + d*
x]]/(a^2*d) - Sin[c + d*x]/(a*d*(a + b*Cos[c + d*x]))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 2659

Int[((a_) + (b_.)*sin[Pi/2 + (c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x
]}, Dist[(2*e)/d, Subst[Int[1/(a + b + (a - b)*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}
, x] && NeQ[a^2 - b^2, 0]

Rule 2747

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Dist[b/(
b*c - a*d), Int[1/(a + b*Sin[e + f*x]), x], x] - Dist[d/(b*c - a*d), Int[1/(c + d*Sin[e + f*x]), x], x] /; Fre
eQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0]

Rule 3056

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (C_.)*s
in[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[((A*b^2 + a^2*C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*(c +
d*Sin[e + f*x])^(n + 1))/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2)), x] + Dist[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), I
nt[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[a*(m + 1)*(b*c - a*d)*(A + C) + d*(A*b^2 + a^2*C)*
(m + n + 2) - (c*(A*b^2 + a^2*C) + b*(m + 1)*(b*c - a*d)*(A + C))*Sin[e + f*x] - d*(A*b^2 + a^2*C)*(m + n + 3)
*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]
 && NeQ[c^2 - d^2, 0] && LtQ[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2*n] && LtQ
[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) || EqQ[a, 0])))

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin {align*} \int \frac {\left (1-\cos ^2(c+d x)\right ) \sec (c+d x)}{(a+b \cos (c+d x))^2} \, dx &=-\frac {\sin (c+d x)}{a d (a+b \cos (c+d x))}+\frac {\int \frac {\left (a^2-b^2\right ) \sec (c+d x)}{a+b \cos (c+d x)} \, dx}{a \left (a^2-b^2\right )}\\ &=-\frac {\sin (c+d x)}{a d (a+b \cos (c+d x))}+\frac {\int \frac {\sec (c+d x)}{a+b \cos (c+d x)} \, dx}{a}\\ &=-\frac {\sin (c+d x)}{a d (a+b \cos (c+d x))}+\frac {\int \sec (c+d x) \, dx}{a^2}-\frac {b \int \frac {1}{a+b \cos (c+d x)} \, dx}{a^2}\\ &=\frac {\tanh ^{-1}(\sin (c+d x))}{a^2 d}-\frac {\sin (c+d x)}{a d (a+b \cos (c+d x))}-\frac {(2 b) \operatorname {Subst}\left (\int \frac {1}{a+b+(a-b) x^2} \, dx,x,\tan \left (\frac {1}{2} (c+d x)\right )\right )}{a^2 d}\\ &=-\frac {2 b \tan ^{-1}\left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{a^2 \sqrt {a-b} \sqrt {a+b} d}+\frac {\tanh ^{-1}(\sin (c+d x))}{a^2 d}-\frac {\sin (c+d x)}{a d (a+b \cos (c+d x))}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.20, size = 123, normalized size = 1.31 \[ \frac {\frac {2 b \tanh ^{-1}\left (\frac {(a-b) \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {b^2-a^2}}\right )}{\sqrt {b^2-a^2}}-\frac {a \sin (c+d x)}{a+b \cos (c+d x)}-\log \left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )+\log \left (\sin \left (\frac {1}{2} (c+d x)\right )+\cos \left (\frac {1}{2} (c+d x)\right )\right )}{a^2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[((1 - Cos[c + d*x]^2)*Sec[c + d*x])/(a + b*Cos[c + d*x])^2,x]

[Out]

((2*b*ArcTanh[((a - b)*Tan[(c + d*x)/2])/Sqrt[-a^2 + b^2]])/Sqrt[-a^2 + b^2] - Log[Cos[(c + d*x)/2] - Sin[(c +
 d*x)/2]] + Log[Cos[(c + d*x)/2] + Sin[(c + d*x)/2]] - (a*Sin[c + d*x])/(a + b*Cos[c + d*x]))/(a^2*d)

________________________________________________________________________________________

fricas [B]  time = 0.59, size = 464, normalized size = 4.94 \[ \left [-\frac {{\left (b^{2} \cos \left (d x + c\right ) + a b\right )} \sqrt {-a^{2} + b^{2}} \log \left (\frac {2 \, a b \cos \left (d x + c\right ) + {\left (2 \, a^{2} - b^{2}\right )} \cos \left (d x + c\right )^{2} - 2 \, \sqrt {-a^{2} + b^{2}} {\left (a \cos \left (d x + c\right ) + b\right )} \sin \left (d x + c\right ) - a^{2} + 2 \, b^{2}}{b^{2} \cos \left (d x + c\right )^{2} + 2 \, a b \cos \left (d x + c\right ) + a^{2}}\right ) - {\left (a^{3} - a b^{2} + {\left (a^{2} b - b^{3}\right )} \cos \left (d x + c\right )\right )} \log \left (\sin \left (d x + c\right ) + 1\right ) + {\left (a^{3} - a b^{2} + {\left (a^{2} b - b^{3}\right )} \cos \left (d x + c\right )\right )} \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \, {\left (a^{3} - a b^{2}\right )} \sin \left (d x + c\right )}{2 \, {\left ({\left (a^{4} b - a^{2} b^{3}\right )} d \cos \left (d x + c\right ) + {\left (a^{5} - a^{3} b^{2}\right )} d\right )}}, -\frac {2 \, {\left (b^{2} \cos \left (d x + c\right ) + a b\right )} \sqrt {a^{2} - b^{2}} \arctan \left (-\frac {a \cos \left (d x + c\right ) + b}{\sqrt {a^{2} - b^{2}} \sin \left (d x + c\right )}\right ) - {\left (a^{3} - a b^{2} + {\left (a^{2} b - b^{3}\right )} \cos \left (d x + c\right )\right )} \log \left (\sin \left (d x + c\right ) + 1\right ) + {\left (a^{3} - a b^{2} + {\left (a^{2} b - b^{3}\right )} \cos \left (d x + c\right )\right )} \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \, {\left (a^{3} - a b^{2}\right )} \sin \left (d x + c\right )}{2 \, {\left ({\left (a^{4} b - a^{2} b^{3}\right )} d \cos \left (d x + c\right ) + {\left (a^{5} - a^{3} b^{2}\right )} d\right )}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-cos(d*x+c)^2)*sec(d*x+c)/(a+b*cos(d*x+c))^2,x, algorithm="fricas")

[Out]

[-1/2*((b^2*cos(d*x + c) + a*b)*sqrt(-a^2 + b^2)*log((2*a*b*cos(d*x + c) + (2*a^2 - b^2)*cos(d*x + c)^2 - 2*sq
rt(-a^2 + b^2)*(a*cos(d*x + c) + b)*sin(d*x + c) - a^2 + 2*b^2)/(b^2*cos(d*x + c)^2 + 2*a*b*cos(d*x + c) + a^2
)) - (a^3 - a*b^2 + (a^2*b - b^3)*cos(d*x + c))*log(sin(d*x + c) + 1) + (a^3 - a*b^2 + (a^2*b - b^3)*cos(d*x +
 c))*log(-sin(d*x + c) + 1) + 2*(a^3 - a*b^2)*sin(d*x + c))/((a^4*b - a^2*b^3)*d*cos(d*x + c) + (a^5 - a^3*b^2
)*d), -1/2*(2*(b^2*cos(d*x + c) + a*b)*sqrt(a^2 - b^2)*arctan(-(a*cos(d*x + c) + b)/(sqrt(a^2 - b^2)*sin(d*x +
 c))) - (a^3 - a*b^2 + (a^2*b - b^3)*cos(d*x + c))*log(sin(d*x + c) + 1) + (a^3 - a*b^2 + (a^2*b - b^3)*cos(d*
x + c))*log(-sin(d*x + c) + 1) + 2*(a^3 - a*b^2)*sin(d*x + c))/((a^4*b - a^2*b^3)*d*cos(d*x + c) + (a^5 - a^3*
b^2)*d)]

________________________________________________________________________________________

giac [A]  time = 0.43, size = 165, normalized size = 1.76 \[ -\frac {\frac {2 \, {\left (\pi \left \lfloor \frac {d x + c}{2 \, \pi } + \frac {1}{2} \right \rfloor \mathrm {sgn}\left (2 \, a - 2 \, b\right ) + \arctan \left (\frac {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{\sqrt {a^{2} - b^{2}}}\right )\right )} b}{\sqrt {a^{2} - b^{2}} a^{2}} - \frac {\log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right )}{a^{2}} + \frac {\log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right )}{a^{2}} + \frac {2 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{{\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a + b\right )} a}}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-cos(d*x+c)^2)*sec(d*x+c)/(a+b*cos(d*x+c))^2,x, algorithm="giac")

[Out]

-(2*(pi*floor(1/2*(d*x + c)/pi + 1/2)*sgn(2*a - 2*b) + arctan((a*tan(1/2*d*x + 1/2*c) - b*tan(1/2*d*x + 1/2*c)
)/sqrt(a^2 - b^2)))*b/(sqrt(a^2 - b^2)*a^2) - log(abs(tan(1/2*d*x + 1/2*c) + 1))/a^2 + log(abs(tan(1/2*d*x + 1
/2*c) - 1))/a^2 + 2*tan(1/2*d*x + 1/2*c)/((a*tan(1/2*d*x + 1/2*c)^2 - b*tan(1/2*d*x + 1/2*c)^2 + a + b)*a))/d

________________________________________________________________________________________

maple [A]  time = 0.15, size = 137, normalized size = 1.46 \[ -\frac {2 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{d a \left (a \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b +a +b \right )}-\frac {2 b \arctan \left (\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (a -b \right )}{\sqrt {\left (a -b \right ) \left (a +b \right )}}\right )}{d \,a^{2} \sqrt {\left (a -b \right ) \left (a +b \right )}}-\frac {\ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{d \,a^{2}}+\frac {\ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{d \,a^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1-cos(d*x+c)^2)*sec(d*x+c)/(a+b*cos(d*x+c))^2,x)

[Out]

-2/d/a*tan(1/2*d*x+1/2*c)/(a*tan(1/2*d*x+1/2*c)^2-tan(1/2*d*x+1/2*c)^2*b+a+b)-2/d/a^2*b/((a-b)*(a+b))^(1/2)*ar
ctan(tan(1/2*d*x+1/2*c)*(a-b)/((a-b)*(a+b))^(1/2))-1/d/a^2*ln(tan(1/2*d*x+1/2*c)-1)+1/d/a^2*ln(tan(1/2*d*x+1/2
*c)+1)

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: ValueError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-cos(d*x+c)^2)*sec(d*x+c)/(a+b*cos(d*x+c))^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(4*b^2-4*a^2>0)', see `assume?`
 for more details)Is 4*b^2-4*a^2 positive or negative?

________________________________________________________________________________________

mupad [B]  time = 1.94, size = 486, normalized size = 5.17 \[ \frac {2\,\mathrm {atanh}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{a^2\,d}+\frac {b^2\,\left (a\,\sin \left (c+d\,x\right )+2\,\cos \left (c+d\,x\right )\,\mathrm {atanh}\left (\frac {a^5\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {b^2-a^2}+2\,b^3\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,{\left (b^2-a^2\right )}^{3/2}-2\,b^5\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {b^2-a^2}+3\,a^2\,b^3\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {b^2-a^2}-a^3\,b^2\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {b^2-a^2}-a^4\,b\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {b^2-a^2}}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,{\left (a\,b^2-a^3\right )}^2}\right )\,\sqrt {b^2-a^2}\right )-a^3\,\sin \left (c+d\,x\right )+2\,a\,b\,\mathrm {atanh}\left (\frac {a^5\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {b^2-a^2}+2\,b^3\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,{\left (b^2-a^2\right )}^{3/2}-2\,b^5\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {b^2-a^2}+3\,a^2\,b^3\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {b^2-a^2}-a^3\,b^2\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {b^2-a^2}-a^4\,b\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {b^2-a^2}}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,{\left (a\,b^2-a^3\right )}^2}\right )\,\sqrt {b^2-a^2}}{a^2\,d\,\left (a^2-b^2\right )\,\left (a+b\,\cos \left (c+d\,x\right )\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(cos(c + d*x)^2 - 1)/(cos(c + d*x)*(a + b*cos(c + d*x))^2),x)

[Out]

(2*atanh(sin(c/2 + (d*x)/2)/cos(c/2 + (d*x)/2)))/(a^2*d) + (b^2*(a*sin(c + d*x) + 2*cos(c + d*x)*atanh((a^5*si
n(c/2 + (d*x)/2)*(b^2 - a^2)^(1/2) + 2*b^3*sin(c/2 + (d*x)/2)*(b^2 - a^2)^(3/2) - 2*b^5*sin(c/2 + (d*x)/2)*(b^
2 - a^2)^(1/2) + 3*a^2*b^3*sin(c/2 + (d*x)/2)*(b^2 - a^2)^(1/2) - a^3*b^2*sin(c/2 + (d*x)/2)*(b^2 - a^2)^(1/2)
 - a^4*b*sin(c/2 + (d*x)/2)*(b^2 - a^2)^(1/2))/(cos(c/2 + (d*x)/2)*(a*b^2 - a^3)^2))*(b^2 - a^2)^(1/2)) - a^3*
sin(c + d*x) + 2*a*b*atanh((a^5*sin(c/2 + (d*x)/2)*(b^2 - a^2)^(1/2) + 2*b^3*sin(c/2 + (d*x)/2)*(b^2 - a^2)^(3
/2) - 2*b^5*sin(c/2 + (d*x)/2)*(b^2 - a^2)^(1/2) + 3*a^2*b^3*sin(c/2 + (d*x)/2)*(b^2 - a^2)^(1/2) - a^3*b^2*si
n(c/2 + (d*x)/2)*(b^2 - a^2)^(1/2) - a^4*b*sin(c/2 + (d*x)/2)*(b^2 - a^2)^(1/2))/(cos(c/2 + (d*x)/2)*(a*b^2 -
a^3)^2))*(b^2 - a^2)^(1/2))/(a^2*d*(a^2 - b^2)*(a + b*cos(c + d*x)))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ - \int \left (- \frac {\sec {\left (c + d x \right )}}{a^{2} + 2 a b \cos {\left (c + d x \right )} + b^{2} \cos ^{2}{\left (c + d x \right )}}\right )\, dx - \int \frac {\cos ^{2}{\left (c + d x \right )} \sec {\left (c + d x \right )}}{a^{2} + 2 a b \cos {\left (c + d x \right )} + b^{2} \cos ^{2}{\left (c + d x \right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-cos(d*x+c)**2)*sec(d*x+c)/(a+b*cos(d*x+c))**2,x)

[Out]

-Integral(-sec(c + d*x)/(a**2 + 2*a*b*cos(c + d*x) + b**2*cos(c + d*x)**2), x) - Integral(cos(c + d*x)**2*sec(
c + d*x)/(a**2 + 2*a*b*cos(c + d*x) + b**2*cos(c + d*x)**2), x)

________________________________________________________________________________________